Tripodal transmembrane transporters for bicarbonate.
نویسندگان
چکیده
Easy-to-make tripodal tris-thiourea receptors based upon tris(2-aminoethyl)amine are capable of chloride/bicarbonate transport and as such represent a new class of bicarbonate transport agent.
منابع مشابه
Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination
A series of easy-to-make fluorinated tripodal anion transporters containing urea and thiourea groups have been prepared and their anion transport properties studied. Vesicle anion transport assays using ion-selective electrodes show that this class of compound is capable of transporting chloride through a lipid bilayer via a variety of mechanisms, including chloride/H(+) cotransport and chlorid...
متن کاملHighly effective yet simple transmembrane anion transporters based upon ortho-phenylenediamine bis-ureas.
Simple, highly fluorinated receptors are shown to function as highly effective transmembrane anion antiporters with the most active transporters rivalling the transport efficacy of natural anion transporter prodigiosin for bicarbonate.
متن کاملInteractions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters.
Association of some plasma membrane bicarbonate transporters with carbonic anhydrase enzymes forms a bicarbonate transport metabolon to facilitate metabolic CO(2)-HCO(3)(-) conversions and coupled HCO(3)(-) transport. The transmembrane carbonic anhydrase, CAIX, with its extracellular catalytic site, is highly expressed in parietal and other cells of gastric mucosa, suggesting a role in acid sec...
متن کاملTambjamine alkaloids and related synthetic analogs: efficient transmembrane anion transporters.
The tambjamine alkaloids and related synthetic analogs are potent transmembrane anion tranporters promoting bicarbonate/chloride exchange in model phospholipid liposomes and discharging pH gradients in living cells.
متن کاملRedirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants
Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM), principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemical communications
دوره 46 34 شماره
صفحات -
تاریخ انتشار 2010